EXPERT KNOWLEDGE AT A GLANCE

Tag: neural networks

That is why Liquid State Machines (LSM) are great

– Recently developed computational model

– does not require information to be stored in some stable state of the system

→ the inherent dynamics of the system are used by a memory less readout function to compute the output

→ can be used for complex Tasks (pattern classification, function approximation, object tracking, …)

LSMs take the temporal aspect of the input into account

Concept

The figure shows a typical structure of a liquid State Machine.
Liquid State Machine

Reservoir/ Liquid

– large accumulation of recurrent interacting nodes
→ is stimulated by the input layer
– Liquid itself is not trained, but randomly constructed with the help of heuristics
– Loops cause a short-term memory effect
– preferably a Spiking Neural Network (SNNs)
→ are closer to biological neural networks than the multilayer Perceptron
→ can be any type of network that has sufficient internal dynamics

Running State

→ will be extracted by the readout function

– depend on the input streams they’ve been presented

Readout Function

– converts the high-dimensional state into the output

– since the readout function is separated from the liquid, several readout functions can be used with the same liquid

→ so different tasks can be performed with the same input

lsm readout fcts
different types of readout functions

AutoEncoder – What Is It? And What Is It Used For?

AutoEncoder – In data science, we often encounter multidimensional data relationships. Understanding and representing these is often not straightforward. But how do you effectively reduce the dimension without reducing the information content?

Unsupervised dimension reduction

One possibility is offered by unsupervised machine learning algorithms, which aim to code high-dimensional data as effectively as possible in a low-dimensional way.
If you don’t know the difference between unsupervised, supervised and reinforcement learning, check out this article we wrote on the topic.

What is an AutoEncoder?

The AutoEncoder is an artificial neural network that is used to unsupervised reduce the data dimensions.
The network usually consists of three or more layers. The gradient calculation is usually done with a backpropagation algorithm. The network thus corresponds to a feedforward network that is fully interconnected layer by layer.

Types

AutoEncoder types are many. The following table lists the most common variations.

The figure shows all common AutoEncoder types
AutoEncoder types

However, the basic structure of all variations is the same for all types.

Basic Structure

Each AutoEncoder is characterized by an encoding and a decoding side, which are connected by a bottleneck, a much smaller hidden layer.

The following figure shows the basic network structure.

The figure shows the basic AutoEncoder structure.
AutoEncoder model architecture


During encoding, the dimension of the input information is reduced. The average value of the information is passed on and the information is compressed in such a way.
In the decoding part, the compressed information is to be used to reconstruct the original data. For this purpose, the weights are then adjusted via backpropagation.
In the output layer, each neuron then has the same meaning as the corresponding neuron in the input layer.

Autoencoder vs Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machines are also based on a similar idea. These are undirected graphical models useful for dimensionality reduction, classification, regression, collaborative filtering, and feature learning. However, these take a stochastic approach. Thus, stochastic units with a particular distribution are used instead of the deterministic distribution.


RBMs are designed to find the connections between visible and hidden random variables. How does the training work?
The hidden biases generate the activations during forward traversal and the visible layer biases generate learning of the reconstruction during backward traversal.

Pretraining

Since the random initialization of weights in neural networks at the beginning of training is not always optimal, it makes sense to pre-train. The task of training is to minimize an error or a reconstruction in order to find the most efficient compact representation for input data.

The figure shows the pretraining procedure of an autoencoder according to Hinton.
Training Stacked Autoencoder


The method was developed by Geoffrey Hinton and is primarily for training complex autoencoders. Here, the neighboring layers are treated as a Restricted Boltzmann Machine. Thus, a good approximation is achieved and fine-tuning is done with a backpropagation.